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An initial value problem with relevance to jet noise is investigated. A plane parallel jet
flow is subjected to a spatially localized initial disturbance and is then left to evolve
according to the two-dimensional compressible Navier–Stokes equations. The hydro-
dynamic response is in the form of a convecting vortex packet. The Ffowcs Williams–
Hawkings approach is formulated in the time domain and used to extrapolate from the
simulated near field to the acoustic far field. The predominant downstream sound
radiation comes from an early stage of nonlinear development of the vortex packet.
Two simplified models to account for the radiation are introduced, based on nonlinear
mode interactions on a prescribed base flow. The first uses two sets of linearized Euler
equations, coupled via the inviscid Lilley–Goldstein acoustic analogy. This formulation
separates the linear sound field from the sound field driven by nonlinear interactions;
qualitative agreement of the latter with the Navier–Stokes computations demonstrates
the importance of nonlinear interactions. The second model uses combinations of
linear inviscid eigenmodes to drive the sound field, which allows extraction of the
dominant mode interactions responsible for the observed radiation pattern. The results
indicate that a difference-wavenumber nonlinear interaction mechanism dominates
sound radiation from subsonic instability modes in shear flows.

1. Introduction
The noise from jet engines remains a significant environmental problem. High-

frequency sound is usually attributed to the turbulent shear layers around a potential
core during the early development of the jet while low frequencies are attributed to
the downstream jet evolution. The principal method to reduce jet noise over the past
half-century has been the use of progressively higher bypass ratio engines. However,
further development in this direction is at the cost of propulsive efficiency and recent
efforts have been concentrated more on nozzle design for which accurate prediction
methods are needed.

A major limitation on the accuracy of predictions of sound produced by turbulent
flows is the representation of the turbulence. Scaling arguments, such as the Lighthill
(1952) M5 law for the efficiency of conversion of jet power into sound power, require
only the assumption that the unsteady turbulence stresses scale as the jet velocity
squared. However to go further and predict sound spectra, or develop control schemes
to reduce noise, requires a more complete understanding of turbulence that continues
to elude theory. With the growth of computer power it has become feasible to couple
the theoretical formulations of aeroacoustics with numerical simulations of turbulent
jets, at least for simple nozzle geometry (see Shur, Spalart & Strelets 2005 for a
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Figure 1. Direct simulation of jet noise from a plane jet with transition to turbulence
(Re = 2000 based on jet width). The inner region shows contours of vorticity magnitude
and the outer region shows contours of dilatation rate.

review of some of the practical issues). Direct computations of sound (see e.g. Freund
2001) solve the compressible Navier–Stokes equations in a finite domain that includes
the near sound field. With this approach care needs to be taken to minimize the
reflections of waves from the outer boundaries of the computational domain; for a
recent review see Colonius (2004). To predict the acoustic far field, particularly from
three-dimensional calculations, computational cost usually dictates the use of cheaper
methods such as linearized Euler numerical matching to a wave equation solution
domain, or surface integral methods such as the Kirchhoff or Ffowcs Williams &
Hawkings (1969 hereafter denoted FW–H) approaches.

1.1. Large-scale structures, instability waves and sound radiation

An example of a direct computation of sound is given on figure 1. This shows vorticity
(inner region) and dilatation rate (outer region) for a Mach 0.9 plane jet at Reynolds
number 2000 (based on jet width), computed using the method of Hu, Morfey &
Sandham (2002). The sound field emanates from a region of the flow (centred around
x = 5 jet widths) that is dominated by large-scale organized structures. Such structures
in free shear flows (cf. Brown & Roshko 1974) have properties, such as convection
speeds, in common with instability waves developing on a similar base flow and
there is a direct connection between instability wave growth rates and shear layer
spreading rate (e.g. Morris, Giridharan & Lilley 1990; Sandham & Reynolds 1990).
Recent experimental work has provided evidence that instability waves are present in
fully turbulent jets at high Reynolds number: Suzuki & Colonius (2006) used a near-
field microphone array to extract the instability-wave pressure signature and found
remarkably good agreement with linear theory. A model for the production of sound
based on linear instability waves was developed by Tam & Morris (1980), assuming
a slowly spreading base flow, which resulted in the spatial growth and decay of
linear eigenmodes. The approach has been of most use in supersonic flows, where the
instability waves responsible for the sound radiation are amongst the most unstable.
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A related model for subsonic jets, based on convected waves with a prescribed
amplitude distribution, was analysed by Crighton & Huerre (1990) in the asymptotic
limit of slow amplitude variation compared to wavelength. It gave a superdirective
radiation pattern, which replicated some earlier subsonic jet experiments of Laufer &
Yen (1983) and has since been observed in several numerical studies of unsteady
laminar shear flows, forced so as to produce vortex pairing. For example,
Colonius, Lele & Moin (1997) imposed disturbances on a two-dimensional plane
mixing layer at the fundamental (most unstable) frequency and two subharmonics.
Although the principal sound radiation appeared to originate from the two vortex
pairing locations in the flow, its directivity was consistent with a convected
wavepacket model similar to that of Crighton & Huerre (1990), with an asymmetric
envelope shape. Mitchell, Lele & Moin (1999) conducted a similar study for an
axisymmetric jet over a range of Mach numbers (from 0.4 to 1.2). They found
superdirective radiation patterns at higher Mach numbers, while at low Mach
numbers (where the source region is acoustically compact in the streamwise direction)
there was a lobed directivity pattern similar to that of a compact axisymmetric
quadrupole.

1.2. Simplified physical model and objectives

Direct numerical simulations of compressible turbulent flow contain complete infor-
mation about the turbulence and the near acoustic field, and one approach to noise
research is to probe the simulation databases to try and understand the mechanisms
of sound production, with the hope that the improved understanding will lead to
better physical modelling. A complementary approach is to develop simplified model
problems that contain the main physical mechanisms. Here, we follow the latter
approach and focus on the transient response of a parallel plane jet to a point
disturbance input. A conceptually similar problem was studied by Howe (1970) in the
context of sound transmission across a vortex sheet; but here we are able to compute
the full flow field exactly, including the shear layer unstable response. This simplified
model problem focuses attention on vortex interactions during temporal evolution
of a perturbed parallel flow, similar in velocity profile to the mean flow field of a
plane turbulent jet (as in figure 1) near the end of the jet potential core. In contrast
to spatial simulations, where time-dependent disturbances are imposed at an inflow
boundary, the present model uses a large (spatially periodic) domain in the streamwise
direction, forced by a localized initial condition. This allows the origin of particular
sound waves to be clearly located.

The objective of the present work is to distinguish between a linear and nonlinear
source mechanism. A simplified nonlinear model is formulated by involving the
second term of an amplitude expansion of the perturbation. The success of this
model, compared to the strictly linear response, suggests a new interpretation of the
origins of jet noise in terms of difference-mode interactions.

The two main sections that follow deal respectively with the Navier–Stokes simula-
tions and the simplified models. In § 2 the problem is specified and results for the near
and far sound field are presented. A base flow is also extracted from the simulation
for use in the subsequent modelling. In § 3, two models are proposed, one based on the
linearized Euler equations (§ 3.1), the other on eigenmode-forcing (§ 3.2). Consistency
between the approaches is demonstrated; this allows the identification of nonlinear
eigenmode interactions as significant contributors to the sound radiation. Implications
are discussed in § 4.
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2. Impulsive response of a parallel plane jet
2.1. Problem specification

We consider an initially parallel two-dimensional jet flow with a rounded top-hat
velocity profile:

u0 = 1
2
(tanh(y + y0) − tanh(y − y0)), (2.1)

with y0 = 5. All variables are expressed in dimensionless form with length scaled on
one half of the initial shear layer vorticity thickness (so that δω = 2). The Reynolds
number based on the initial jet width is ReJ = 2y∗

0U
∗
J /ν∗

J =2000, where an asterisk
denotes dimensional variables and subscript J denotes a jet potential-core reference
condition (note that the choice of y0 = 5 is large enough that this is effectively the same
as the jet centreline condition at time t = 0). The governing equation and numerical
method are given in Appendix A.

The initial jet potential-core temperature is taken equal to the ambient fluid
temperature and the initial temperature distribution (normalized as T = T ∗/T ∗

J ) is
obtained from a Crocco–Busemann relation

T0 = 1 +
γ − 1

2
M2u0(1 − u0), (2.2)

where M is the jet Mach number (the initial ratio of jet potential core velocity U ∗
J

to sound speed c∗
J ). For M =0.9 this leads to a small (4 % maximum) temperature

rise in the shear layer. The model calculations in § 3 use a constant-temperature base
flow.

The jet is perturbed initially by a localized two-dimensional disturbance to the
normal component of velocity, centred in the upper shear layer at x = x0:

v0(x, y) = a0 tanh(x − x0) exp(−(x − x0)
2) exp(−b0(y − y0)

2). (2.3)

The disturbance shape is resolved on the computational grid. We take x0 = 60,
a0 = 0.05 and b0 = 0.1 and then follow the temporal evolution of what we shall call
the ‘vortex packet’ and the sound emitted from it.

2.2. Vortex packet and near-field sound radiation

We first present some results from a large-box simulation, with box lengths Lx = 400,
Ly =300 on a grid with 1024 × 801 grid points. A typical result from the late stages
of the simulation is shown on figure 2 by dilatation rate and vorticity contours at
t = 293.7. The dilatation rate plot (figure 2a) shows a number of sound waves that had
their genesis in the early nonlinear evolution of the wavepacket and are now travelling
predominantly in the downstream direction. The leading wave is an expansion wave
that has just re-emerged at the left-hand boundary due to the periodic boundary
condition. Successive expansion and compression waves are visible and more waves
emerge during later evolution of the vortex packet. The vorticity plot (figure 2b) shows
the nonlinear vortex packet that has developed from the jet instability triggered by
the forcing. The vortex packet is convecting downstream and spreading, as expected
in a convectively unstable flow. A t − x diagram is shown on figure 3, constructed by
tracking the locations of all local pressure minima in the flow. The leading edge of
the vortex packet is moving at approximately the jet core velocity while the trailing
edge moves at 12 % of the jet core velocity. The envelope of the vortex packet is
shown on figure 3 by the lines x = 32 + t and x = 97 + 0.12(t −65). Beyond t ≈ 250 the
trajectories become noticeably curved, indicating strong acceleration or deceleration
of vortices as they move under their mutual induction.
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Figure 2. Contours of (a) dilatation rate (contour levels ±[0.05, 0.20, 0.40, 0.65]/300; filled
contours are used for positive values, corresponding to areas of expansion) and (b) vorticity
(8 equally spaced contours) at t = 293.7 showing the sound waves being emitted by the vortex
packet.

50 100 150 200
x

250 300 350
50

100

150

200

250

300

t

Figure 3. A t − x diagram showing the convection of vortices, located by local
pressure minima.
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Figure 4. Variation in dilatation rate amplitude of emitted sound wave with Mach number.

Changing the Mach number affects the amplitude of the emitted sound. Figure 4
shows dilatation rate amplitudes from a series of small-box simulations at jet Mach
numbers of 0.3, 0.45, 0.6, 0.9 and 1.2, with the forcing initially in the lower shear layer.
The amplitude is computed at x = 210, y = −78 as half the expansion-to-compression
variation during the first sound wave passage following the vortex evolution. The
transverse location is approximately λ/2 (where λ is the acoustic wavelength) away
from the jet centreline. A low-Mach-number scaling law based on compact quadrupole
sources is also shown on the figure as a line proportional to M3.5. The exponent of
3.5 comes from the two-dimensional Green function for a quadrupole source, which
yields the scaling exponent of far-field pressure fluctuations as 1.5, together with a
further exponent of 2 to convert from pressure to dilatation rate. The asymptotic
prediction matches the simulation results rather well at low Mach numbers, lending
support to the use of this simplified configuration to study the mechanisms of jet
noise production.

2.3. Extrapolation of the acoustic field

So far only the near acoustic field has been studied. Since we later focus on simplified
models to predict the near-field sound, it is important to check at this stage that
such sound does indeed radiate out into the far field, and to investigate the structure
of this far-field radiation. In spatially developing jet problems the FW–H method is
complicated by jet structures crossing a downstream surface and leading to spurious
sound radiation (Shur et al. 2005). Here, due to the initial value nature of the problem,
this complication is absent and other aspects of the performance of the FW–H method
can be assessed. A time-domain solution technique is adopted.

Following the FW–H approach, the solution of a linear wave equation (with
operator L= c−2

∞ ∂2/∂t2 − ∂2/∂x2
i , c∞ being the sound speed of the ambient medium)
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Figure 5. Evaluation of the FW–H surface method. Comparison of FW–H prediction for the
pressure perturbation (dashed line) with simulation result (solid line) at (x = 150, y = −78).
The peak-to-peak period of the oscillation is T ≈ 130.

in a volume V bounded by a surface S is given by

p(x, t) =

∫ ∞

−∞

∫
S

R( y, τ )g(x, t; y, τ ) d2 y dτ. (2.4)

Here, we take the volume V to be a region outside the jet bounded by the plane
y = yFW–H, where yFW–H is taken as a constant. The observer is at a location x and time
t within V and the integration is carried out over the bounding plane S, for all surface
locations y and all source times τ . The surface integral is not extended to the ‘image’
surfaces represented by the periodic boundary conditions in the x-direction, since we
are interested in the far-field radiation from an individual wavepacket. Assuming (i)
that there are no sources within the volume V , (ii) that the surface y = yFW–H is in the
acoustic region, and (iii) that viscous terms can be neglected, a simplified expression
for R( y, τ ) is obtained (see e.g. FW–H; Lockard 2000; Hu, Morfey & Sandham 2003):

R( y, τ ) = −∂(ρ∞uv)

∂x
− ∂(ρ∞uu + p)

∂y
+

∂(ρ∞v)

∂τ
. (2.5)

The relevant Green function (see e.g. Crighton 1975) is

g(x, t; y, τ ) =
H (t − τ − r/c∞)

2π[(t − τ )2 − (r/c∞)2]0.5
, (2.6)

where r = |x − y| is the distance from the source to the observer. The Green function
contains an integrable singularity, which can be treated without special numerical
considerations: a rectangular integration method was applied in this work. The
numerator of the Green function is the standard Heaviside function.

As a basic test, a surface was located at yFW–H = −39 and used to predict the
pressure at a point (x =150, y = −78), which is still within the simulation domain so
that the Navier–Stokes solution is available for comparison. The simulation was run
with Lx = 480 up to time t = 400 and source data were accumulated. Figure 5 shows
the FW–H prediction (dashed line) compared with the numerical simulation. It can
be seen that there is very good agreement, even during the initial development at
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Figure 6. Prediction of pressure field at t = 400 from FW–H surface method. Contour levels
±[0.05, 0.20, 0.40, 0.65]/20; filled contours are used for positive pressure perturbations.
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Figure 7. Prediction of pressure field at t = 800 from FW–H surface method. Contour levels
±[0.05, 0.20, 0.40, 0.65]/50; filled contours are used for positive pressure perturbations. Note
that a larger domain is used compared to figure 6.

quite low amplitude. The initial response is in the form of two steps (at t = 60 and
t = 70) due to the initial adjustment of the mean profile (since (2.1) is not a solution
of the Navier–Stokes equations), and a small pulse at t =100 when the acoustic
response to the initial disturbance has reached the observer location. The deviations
at t � 350 may be due to volume source terms, not included in the prediction, or due
to boundary effects.

Having been validated, the FW–H procedure can be applied to extrapolate the
acoustic field beyond the original simulation box. Figure 6 shows the pressure field
computed for the region 0 � x � 600 and −350 � y � −50 at time t = 400; this is a
later evolution of the simulation field shown earlier (figure 2). At a still later time
t = 800, but still using source data for 0 � τ � 400, the acoustic field for 0 � x � 1000
and −800 � y � −50 is shown on figure 7. It can be seen that the jet evolution up to
τ = 400 results in a sound packet that propagates outwards. In contrast to figure 6,
figure 7 shows low-level sound radiation in the upstream direction which originates
at a later stage of vortex packet development than the initial (much stronger) down-
stream radiation. A directivity plot of the logarithmic quantity

P = 10 log10

∫ t

0

p2 dt (2.7)
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Figure 8. Far-field directivity from FW–H extrapolation of the Navier–Stokes simulation (jet
Mach number M = 0.9, distance r =600; angles are measured from the downstream direction).

in the acoustic far field is shown on figure 8. For this plot the square of the pressure
was integrated to large time t for an arc of observer positions, located a distance of
6000 (600 jet widths) from the origin of the disturbance at x0 = 60. The difference
in P between the downstream and upstream sound radiation is 12–14 dB. Note that
there is significant radiation of sound in the direction θ < 30◦: in this respect the
sound field is similar to the pairing-generated noise seen in Colonius et al. (1997) and
to the low-Strouhal-number measurements of Lush (1971) (here St ≈ 0.1 based on a
wave period of T ≈ 100). There is no cone of silence since the acoustic wavelength is
an order of magnitude larger than the shear layer thickness (Tester & Morfey 1976).

2.4. Flow structures and mean flow

The origin of the main emission of sound can be traced back to the early evolution
of the vortex packet. Figure 9 shows dilatation rate (a) and vorticity (b) contours at
t = 175.5: the emerging waves are visible in the outermost contours of dilatation rate.
From the vorticity plot it can be seen that this is an early stage of nonlinear roll-up, just
as the vortices are being displaced up and down slightly by their mutual interaction;
earlier evolution is limited to growth of the vortices. Around each vortex the dilatation
rate has a quadrant structure. The quadrants located towards the oncoming flow (in a
frame of reference moving with the vortex) have positive dilatation rate corresponding
to expansion; in the other two quadrants the dilatation rate is negative. Our aim in
§ 3 will be to synthesize the dilatation rate of figure 9 from nonlinear interactions of
instability waves on a selected base flow.

To determine the base flow, we took a streamwise average of u within the vortex
packet and fitted it with an analytic profile of the form

u(y) =
1

2

(
tanh

(
y + y0

δ

)
− tanh

(
y − y0

δ

))
, (2.8)

which for δ = 1 recovers the initial condition (2.1) used in the simulation, and for
increasing δ changes the velocity profile towards a fully developed jet. Figure 10
shows a comparison between the model profiles from (2.8) and the Navier–Stokes
profiles, obtained by averaging over a selected range of x within the vortex packet
envelope shown on figure 3. Values of δ were derived by minimizing the squared
deviation between the simulation and model profiles. It can be seen that the averaged
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Figure 9. Flow structure at t = 175.5 as sound is first emitted: (a) dilatation rate (contour
levels ±[0.05, 0.20, 0.40, 0.65]/600; filled contours are used for positive values, corresponding
to areas of expansion), (b) vorticity (8 equally spaced contours).
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Figure 11. Variation of δ during the early evolution of the vortex packet. The symbols are
extracted from the Navier–Stokes solutions using a best fit to the model profile of the actual
profiles in the inner region of the vortex packet. The solid line is an analytic curve fit through
the symbols given by (2.9).

simulation profiles based on the whole vortex packet are fitted well by the model
equation. Finally the time variation of δ is shown on figure 11, where the two symbols
denote averages over two sub-regions of the vortex packet: zone 1 is the inner 50 %,
and zone 2 is the inner 25 %, of the vortex packet region shown on the x − t diagram
(figure 3). The solid line is a fit through these data of the form:

δ = c3(1 − f )

√
t +

1

c2
3

+ f (c4 + c5t) (2.9)

with

f = 0.5

(
1 + tanh

(
t − c1

c2

))
. (2.10)

The constants are (c1, c2, c3, c4, c5) = (170, 30, 0.125, 3, 0.007). It can be seen that there
is a rapid change in δ for 150 < t < 200; profiles in this region correspond to the end
of the potential core in the plane jet seen in figure 1.

3. Linear and nonlinear modelling
In this section we propose a method of computing the sound radiation from

nonlinear mode interactions that yields qualitative agreement of the near-field sound
with the Navier–Stokes computations of § 2. We start with a coupled linearized Euler
model and then simplify this further to a model based on linear stability eigenmodes.

3.1. Coupled linearized-Euler model

The nonlinear model consists of a pair of linearized Euler problems, where the second
depends on the output of the first (one-way coupling) and nonlinearities are explicitly
included in the forcing of the second linear system. First, we solve the linearized Euler
equations for the strictly linear response to the same initial conditions (2.1)–(2.3) as
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in the Navier–Stokes computations. Defining

D

Dt
=

∂

∂t
+ uj

∂

∂xj

, (3.1)

the first set of linearized Euler equations can be written

DuL
i

Dt
+ uL

j

∂ui

∂xj

= − 1

ρ

∂pL

∂xi

(3.2)

DpL

Dt
= −γp

∂uL
i

∂xi

. (3.3)

We have assumed that the time-dependent (but x-independent) base flow, denoted
by variables with an overbar, has uniform pressure and is divergence-free. The time
variation of the shear layer thickness parameter δ is taken from (2.9). Solved with
a fourth-order Runge–Kutta time advance and second-order central differences in
space, this provides the linear solution (uL

i , pL), which is shown on figure 12(a) at
time t =250 as contours of dilatation rate. This solution is the linear response of the
thickening base flow to a localized disturbance in the initial condition. The contours
show the dilatation rate associated with the wavepacket that develops from purely
linear instability of the base flow.

An inhomogeneous linear problem is then solved to give the response (uN
i , pN ) to

nonlinear forcing. In this case there are no initial disturbances and the response is
driven by forcing terms (fi, q) on the right-hand side of the equations. The governing
equations are

DuN
i

Dt
+ uN

j

∂ui

∂xj

= − 1

ρ

∂pN

∂xi

+ fi (3.4)

DpN

Dt
= −γp

∂uN
i

∂xi

+ q. (3.5)

At leading order the forcing terms according to the Lilley–Goldstein acoustic analogy
(Lilley 1974; Goldstein 2001) are q = 0 and

fi = −
∂uL

i uL
j

∂xj

, (3.6)

which thus introduces a quadratic nonlinearity. No further interactions of the two
fields (uL

i , pL) and (uN
i , pN ) are permitted. The model can be classified as the second

term of an expansion in the amplitude of the perturbation and is also equivalent to
the first step in a method of successive approximation (Van Dyke 1975).

The resulting dilatation rate for the nonlinearly driven field is shown on figure 12(b)
at time t = 250. The structure is quite different to the linear response. However, com-
parison with the Navier–Stokes solution at the same time (figure 12c) reveals similari-
ties: the sound field has spread to a similar extent, indicating a similar time of origin,
and the contour lobe patterns are qualitatively similar. The differences are due to the
simplification of replacing the unsteady vortex packet with a prescribed base flow,
and to higher-order nonlinear effects. We take this good qualitative agreement as a
reason to study the response in more detail.

3.2. Eigenmode-forced model

In principle the linear wavepacket response shown on figure 12(a) can be reproduced
using a sum of eigenmodes of the parallel flow stability problem, with the forcing
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Figure 12. Dilatation rate contours at t = 250. Contour levels ±c[0.05, 0.20, 0.40, 0.65]; filled
contours are used for positive values, corresponding to areas of expansion: (a) linear response
to initial forcing (c = 20); (b) linear response to nonlinear forcing (c = 20000); (c) Navier–Stokes
solution (c = 0.008).

constructed using eigenvalues and eigenfunctions from temporal linear stability theory.
Such eigenmodes are defined by

φ = φ̂(y) exp[ikx + (σ − iω)t], (3.7)
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for variables φ = (u, v, p, T ) with k a wavenumber, ω a frequency, σ a growth rate
and φ̂ an eigenfunction containing the y-dependence. For high Reynolds numbers
and relatively slow growth, the inviscid theory and local analysis will suffice. In this
subsection we test a version of the two-step method of the previous subsection in
which only the eigenvalues of the inviscid jet are required and the jet problem is
reduced to a boundary-value problem. Forcing is applied at y = ±y0 corresponding to
the locations of the inflection points in the jet mean profile, and is limited to a subset
of the Lilley–Goldstein forcing terms. The success of this method in reproducing the
more rigorous results from the previous coupled model will allow us to make a modal
decomposition of the nonlinear forcing term (3.6).

In this simplified version we use a fixed base flow for the calculations (with δ = 4
chosen as a representative shear layer thickness). Outside the forcing layer the line-
arized governing equations reduce to the Pridmore-Brown (1958) (see also Goldstein
1976) equation

D

Dt

[
1

c2

D2p

Dt2
− ∇2p +

1

ρ

∂ρ

∂y

∂p

∂y

]
+ 2

∂u

∂y

∂2p

∂x∂y
= 0. (3.8)

The forcing is chosen to represent the uLuL component of the Reynolds stress forcing
in (3.6). It is concentrated at y = ±y0 such that the jump relations for the forced
Pridmore-Brown equation (derived in Appendix B) are satisfied, leading to the model
boundary conditions

p(y+
0 , t) − p(y−

0 , t) = 0 (3.9)

and

∂p

∂y
(y+

0 , t) − ∂p

∂y
(y−

0 , t) = ρδ(t)
∂2uu

∂x2
. (3.10)

Here δ(t) is the time-dependent jet thickness parameter given by (2.9). Thus the time
variation of jet thickness δ(t) is incorporated in the boundary condition (3.10), while
the base flow (u, ρ) in (3.8) is held fixed (based on δ = 4). The Pridmore-Brown
equation is solved for both y � y0 and y � y0 simultaneously, with the same pressure
gradient boundary condition imposed at y = y+

0 and y = y−
0 . The pressure is updated

at y = y0 using the average update from y = y+
0 and y = y−

0 . This method imposes a
normal pressure gradient jump condition and prevents the accumulation of a pressure
jump at y = y0 (consistent with (3.9)). This solution is then superposed with a solution
where the lower shear layer y0 = −5 is forced in a similar manner.

To generate the nonlinear forcing term on the right of (3.10), an initial u(x, t) = u0(x)
is specified with the same x dependence as (2.3), and Fourier decomposed to give
û0(k). The forcing at y0 = 5 is then generated from

u(x, t) =
1

N

N∑
k=1

û0(k) exp(ikx) exp

[∫
(σ − iω) dt

]
+ c.c. (3.11)

where c.c. denotes complex conjugate. The eigenvalues σ and ω are interpolated
from a database of results for the antisymmetric mode of inviscid linear instability
of the base flow (using the code of Sandham & Reynolds 1990 originally used for
compressible mixing layers), parameterized with wavenumber k and the shear layer
thickness δ.

To evaluate the usefulness of the eigenmode-forcing method, figure 13 compares
the dilatation rate from this method with that of § 3.1. Figure 13(a) is obtained from
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Figure 13. Dilatation rate contours at t = 250. Contour levels ±c[0.05, 0.20, 0.40, 0.65]; filled
contours are used for positive values, corresponding to areas of expansion: (a) linear response to
nonlinear forcing by fx only (c =1500); (b) equivalent linear response according to eigenmode
forcing model (c = 10000).

a solution of the linearized Euler system subject to forcing by

fx = −∂uLuL

∂x
. (3.12)

This is effectively the same term as given in (3.10), but distributed rather than concen-
trated at y = y0; the extra x-derivative arises in (3.10) due to the fact that the forcing
appears in a divergence form in the Pridmore-Brown equation (given in Appendix B).
Figure 13(b) is the solution from the eigenmode method. The two are in very close
correspondence, indicating that the local stability approximation, fixed base flow
and confinement of disturbances to a plane are all acceptable simplifications of the
linearized Euler model, for the purposes of replicating the main features of the sound
field observed in the Navier–Stokes simulation.

4. Discussion
Before assembling an account of the sound production process in the model jet, we

recap some results from the analysis of a modified wavy-wall problem. The traditional
wavy-wall result in acoustics (e.g. Cremer & Heckl 1988, Chap. VI, sections 4b
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and 6b) is that sound only radiates to the far field when the relative disturbance
speed is supersonic. Sandham, Morfey & Hu (2006) considered a modified wavy-
wall problem in which the amplitude of a spatially periodic travelling wave grows,
saturates over a controlled time scale and then decays, similarly to the Tam & Morris
(1980) and Crighton & Huerre (1990) models. Numerical results were obtained over
a wide range of the governing parameters, which are the convection Mach number,
a dimensionless frequency (scaled on the initial growth rate) and a dimensionless
saturation time. Classical cut-off phenomena were observed at low Mach number,
at high frequency and for slow saturation time scale. Significant sound radiation at
subsonic convection Mach numbers was demonstrated for sufficiently low frequencies
and for sufficiently rapid saturation. This result can be interpreted in terms of the
traditional wavy-wall problem by considering a time Fourier decomposition of the
amplitude variation. After Fourier transformation there will be frequencies present
which correspond to supersonic phase speeds of the travelling wave and hence can
contribute to the sound radiation. In the following we focus on the acoustically active
frequencies that are generated by nonlinear interactions of eigenmodes in the present
jet noise model problem.

The nonlinear interaction term in the model of the previous subsection may be
examined in more detail as follows. Two modes with wavenumbers ki and kj are
considered, with the ith linear mode decomposed as

uL
i = ûi exp(ikix) exp

(∫
(σi − iωi) dt

)
+ c.c. (4.1)

and similarly for the jth mode. The nonlinear interaction term in (3.10) is then given
by

∂2
(
uL

i uL
j

)
∂x2

= A+
ij ûi ûj exp(i(ki + kj )x) + A−

ij ûi û
†
j exp(i(ki − kj )x) + c.c. (4.2)

where † and c.c. denote complex conjugates, with prefactors for sum and difference
mode interactions given by

A+
ij = −(ki + kj )

2 exp

(∫
(σi + σj − i(ωi + ωj )) dt

)
, (4.3)

A−
ij = −(ki − kj )

2 exp

(∫
(σi + σj − i(ωi − ωj )) dt

)
. (4.4)

By considering nonlinear interactions in this manner we can have strongly amplified
disturbances with difference frequencies, ωi − ωj , that are small compared with the
growth rate, σi + σj , and hence better coupled to sound in a subsonic jet.

Phase speeds arising from sum- and difference-mode interactions are given by

c+
ij =

ωi + ωj

ki + kj

, (4.5)

c−
ij =

ωi − ωj

ki − kj

. (4.6)

For vanishing differences ki − kj the difference-mode phase speed will tend to the
group velocity. The phase speeds for all mode interactions are shown on figure 14
for all mode combinations up to integer wavenumber κ =40 (κ is related to k by
κ = Lxk/(2π), where Lx = 350 is the length of the computational domain used in these
calculations), at t = 200. It can be seen that all the (two dimensional) interactions lead
to subsonic phase speeds.
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Figure 15. Contribution of (integer) difference wavenumbers κi − κj to the eigenmode
forcing model. Contour levels are at amplitudes 2m with integer m.

Figure 15 shows contours of the real part of the difference-mode amplification
factor A−

ij . It can be seen that peaks occur at κ = 14 ± 3, where from figure 14 the
phase speeds are in the range 0.55 <c−

ij < 0.60. Note that κ = 14 gives a wavelength
of 25, comparable with the scale of the linear response seen in figure 12(a); whereas
the difference wavenumber �κ = 6 gives a wavelength of 58, more representative of
the sound field seen in figure 12(b). Based on �κ = 6 and an assumed phase speed
of just under 0.6, the period of the difference mode interaction is T = 100. This may
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be compared to the period T ≈ 130 seen in the computed sound radiation shown on
figure 5. The difference may be explainable from the wavy-wall model, in which the
lower frequencies arising from smaller difference wavenumbers will be more effective
radiators.

A summary of the proposed mechanism for the sound radiation seen in the
Navier–Stokes simulations (e.g. figure 2a) is as follows. First, the mean flow is linearly
unstable, and a broad band of wavenumbers (modes) is amplified. Secondly, as the
most unstable of these waves reach high amplitude there is an exchange of energy with
the mean flow, resulting in growth of the mean flow shear layer (via Reynolds stresses)
and associated mode saturation. Simultaneously, nonlinear interactions will produce
difference frequencies ωi − ωj wavenumbers ki − kj that radiate efficiently, despite
their nominally subsonic phase speed. With this mechanism, ki − kj wavenumber
combinations from the most amplified linear instability modes can satisfy the necessary
criteria of rapid saturation combined with frequencies that are small compared to the
initial growth rate. The mechanism is not limited to a particular Mach number range.

This explanation based on nonlinear interactions of instability modes is consistent
with the description of Chu & Kovásznay (1958), who studied the bilinear interaction
of vortical, acoustic and entropy modes in compressible flow. They observed that
vortical–vortical interactions could give rise to sound, with a form of the source that
was consistent with Lighthill (1952). The weakly nonlinear interactions studied here
fall into this category since the primary instability mechanism is vortical. Quadratic
nonlinearity of a similar type was also apparent in the experiments of Laufer & Yen
(1983), for forced vortex pairing in a round jet. They observed that the sound intensity
varied as the fourth power of the near-field mode saturation amplitude, whereas a
second power would be expected for a linear relationship of the type assumed in the
Huerre & Crighton (1983) model. In this connection we note that the difference-mode
interaction between a fundamental f and its subharmonic f/2 is also f/2, so the
subharmonic radiation from vortex pairing can be fed by both a linear and weakly
nonlinear mechanism.

The nonlinear interaction on the right-hand side of a linear wave equation has been
emphasized up to this point, but we should note that strong nonlinearity also enters
in the base flow, which thickens as the action of Reynolds stresses transfers energy
from the mean flow into the disturbances. In the calculations shown here a variation
of δ(t) was assumed, based on measurements from the Navier–Stokes calculations.
Such a base flow variation could in principle be provided from a Reynolds-averaged
Navier–Stokes (RANS) code. The nonlinear radiation model could then be used to
predict those aspects of the sound field which can be attributed to interactions of
large organized structures evolving on this base flow. By changing the mean flow one
might be able to make the model responsive to detailed changes in nozzle design. We
caution however that the local characteristics of instability wave saturation may well
contribute to the sound radiation pattern; useful predictions may therefore require
additional modelling of this nonlinear process.

5. Conclusion
The two-dimensional calculations presented here have demonstrated sound radia-

tion from a perturbed two-dimensional plane jet flow, set up as an initial value pro-
blem. The scaling of the sound and its far-field characteristics suggest that the problem
has some relevance to practical jet flows, while the nature of the model problem allows
the sound origin to be located in time as well as space. Sound emission is observed
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to originate at an early stage of nonlinear evolution of the vortex packet that evolves
from the primary asymmetric jet instability.

Two simplified acoustic models have been proposed. Both models solve a pair
of linear systems, with the second system forced by quadratically nonlinear terms
obtained from the first. Both models demonstrate a mechanism of sound generation
by nonlinear interactions of primary instability modes. The second model employs
linear eigenmodes and shows how the sound radiation is dominated by quadratic
difference-wavenumber interactions between growing and decaying subsonic modes.

The authors acknowledge financial support from EPSRC under grant number
GR/R46151.

Appendix A. Numerical method
The two-dimensional Navier–Stokes equations for a Newtonian fluid are written in

dimensionless form using jet potential-core properties as reference values (density ρ,
internal energy e and pressure p are respectively scaled on ρ∗

J , U ∗2
J and ρ∗

J U ∗2
J ), and

δ∗
ω/2 as reference length; the simulation Reynolds number (set to Re = 200) is formed

using these reference quantities. For this model problem the Prandtl number is set to
Pr = 1.0. Note that in the following equations second derivatives are explicitly written
for the y-direction, in which a finite difference scheme will be applied, to ensure that
2h waves are damped (h being the grid spacing). The equations for mass, x and y

momentum, and energy conservation are

∂ρ

∂t
= − ∂

∂x
(ρu) − ∂

∂y
(ρv), (A 1)

∂ρu

∂t
=

∂

∂x

(
τxx − ρu2 − p

)
+

∂

∂y

(
µ

Re

∂v

∂x
− ρuv

)
+

µ

Re

∂2u

∂y2
+

1

Re

∂u

∂y

∂µ

∂y
, (A 2)

∂ρv

∂t
=

∂

∂x
(τxy − ρuv) +

∂

∂y

(
−ρv2 − p − 2

3

µ

Re

∂u

∂x

)
+

µ

Re

4

3

∂2v

∂y2
+

1

Re

4

3

∂v

∂y

∂µ

∂y
, (A 3)

∂ρE

∂t
=

∂

∂x

(
uτxx + vτxy − u (ρE + p) +

γµ

PrRe

∂e

∂x

)

+
∂

∂y

(
uµ

Re

∂v

∂x
− vµ

Re

2

3

∂u

∂x
− v (ρE + p)

)
+

γµ

RePr

∂2e

∂y2
+

γ

RePr

∂e

∂y

∂µ

∂y

+
uµ

Re

∂2u

∂y2
+

∂u

∂y

∂

∂y

(
uµ

Re

)
+

4

3

vµ

Re

∂2v

∂y2
+

4

3

∂v

∂y

∂

∂y

(
vµ

Re

)
. (A 4)

The stresses are given by

τxx =
µ

Re

(
4

3

∂u

∂x
− 2

3

∂v

∂y

)
, (A 5)

τxy =
µ

Re

(
∂u

∂y
+

∂v

∂x

)
, (A 6)

and the total energy is given by

E = e + 1
2
(u2 + v2), (A 7)
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where the internal energy e is related to pressure p and density ρ by the equation of
state for a perfect gas

p = (γ − 1)ρe. (A 8)

The viscosity (µ = µ∗/µ∗
J ) is given by a power law

µ = T 0.67, (A 9)

and the temperature is related to the internal energy by

T = γ (γ − 1)M2e. (A 10)

Periodic boundary conditions are applied in the x-direction, with derivatives in that
direction evaluated using Fourier methods. In the y-direction we employ a symmetric
sixth-order compact finite difference scheme, based on a tridiagonal left-hand-side
matrix and a pentadiagonal right-hand side; see Lele (1992). A stretched grid is
employed for the y-direction, with coordinates given by

y = Ly

sinh(cyη)

sinh cy

(A 11)

where η is uniformly spaced in [−1, 1]. The computational box thus extends to ±Ly .
First and second derivatives of any function f are computed by

fy =
fη

yη

, (A 12)

fyy =
fηη − yηηfy

y2
η

, (A 13)

where a subscript denotes differentiation. In all the calculations presented, a stretching
factor cy = 1.5 has been used.

Standard characteristic boundary conditions (Thompson 1987) are applied at
y = ±Ly/2. Due to the initial-value nature of the problem studied in this paper,
the simulations do not need to be run to long times and boundary reflections are not
an issue (this is one of the benefits of the approach taken).

The computational grid is fine enough to ensure that all relevant flow features are
resolved. The solution is time advanced using a third-order Runge–Kutta method,
with a fixed time step. In the Fourier (x) direction it is necessary to explicitly filter the
‘oddball’ wavenumber κx = Nx/2 so that 2δ oscillations do not build up. A filtered
right-hand side R̂m

i for m =1 . . . 4, representing (A 1)–(A 4) at a grid point i, is given
in terms of the original Rm

i by

R̂m
i = Rm

i − (−1)i

Nx

Nx∑
j=1

(−1)jRm
j . (A 14)

This is applied at every sub-step of the time advance.

Appendix B. Jump relations for the forced Pridmore-Brown equation
In § 3.2 we replace the acoustic forcing caused by hydrodynamic fluctuations dis-

tributed through a shear layer with forcing on a surface. To enable a consistent choice
of boundary conditions we consider jump relations of the third-order Pridmore-Brown
wave equation. The basic problem is specified in two space dimensions (x, y) for a
fixed base flow, with velocity u, density ρ and sound speed c being functions of y
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alone. With forcing terms fx , fy and q included from the Lilley–Goldstein analogy,
the inhomogeneous Pridmore-Brown equation can be written in the form

L(p) = ρQ (B 1)

with the linear operator

L(p) =
D

Dt

[
1

c2

D2p

Dt2
− ∂2p

∂x2
− ∂2p

∂y2
+

1

ρ

∂ρ

∂y

∂p

∂y

]
+ 2

∂u

∂y

∂2p

∂x∂y
(B 2)

and forcing term

Q =
D2q

Dt2
− D

Dt

(
∂fx

∂x
+

∂fy

∂y

)
+ 2

∂u

∂y

∂fy

∂x
. (B 3)

The substantial derivative is given by

D

Dt
=

∂

∂t
+ u

∂

∂x
. (B 4)

The forcing inputs fx , fy and q are now taken to be confined to the plane y = y0;
we write

fx = f̂ x(x, t)δ(y − y0), (B 5)

and similarly for fy and q . In general the pressure p and its normal derivative
∂p/∂y will be discontinuous at y = y0. The jump relations are found by integrating
(B 1)–(B 3) across y = y0. We define

�p = p(y+
0 ) − p(y−

0 ) (B 6)

and

�p′ =
∂p

∂y
(y+

0 ) − ∂p

∂y
(y−

0 ). (B 7)

Integration of (B 2) from y−
0 to y+

0 gives∫
L(p) dy =

D

Dt

(
−�p′ +

1

ρ

∂ρ

∂y
�p

)
+ 2

∂u

∂y

∂(�p)

∂x
(B 8)

and integration again gives ∫∫
L(p) dy ′ dy = −D(�p)

Dt
. (B 9)

The same procedure applied to (B 3) gives∫
Q dy =

D2q̂

Dt2
− D

Dt

(
∂f̂ x

∂x

)
+ 2

∂u

∂y

∂f̂ y

∂x
(B 10)

and ∫∫
Q dy ′ dy = −Df̂ y

Dt
. (B 11)

Substitution of (B 9) and (B 11) into (B 1) gives the pressure jump relation

�p = ρf̂ y. (B 12)
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A pressure gradient jump relation is found by substituting (B 8) and (B 10) into (B 1)
and eliminating the pressure jump using (B 12), leading to

D(�p′)

Dt
= −ρ

[
D2q̂

Dt2
− D

Dt

(
∂f̂ x

∂x

)]
+

∂ρ

∂y
f̂ y. (B 13)

For the special case of a constant-density shear flow this reduces to

�p′ = ρ

(
∂f̂ x

∂x
− Dq̂

Dt

)
. (B 14)

Equations (B 12) and (B 14) constitute the jump relations for a constant-density shear
flow. In § 3.2 we apply these equations for one active forcing term f̂ x , for which
p is continuous but there is a jump in ∂p/∂y that can be imposed as a boundary
condition.
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